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Abstract: The TRS-mediated discontinuous transcription process is a hallmark of Arteriviruses. Pre-
cise assessment of the intricate subgenomic RNA (sg mRNA) populations is required to understand
the kinetics of viral transcription. It is difficult to reconstruct and comprehensively quantify splicing
events using short-read sequencing, making the identification of transcription-regulatory sequences
(TRS) particularly problematic. Here, we applied long-read direct RNA sequencing to characterize
the recombined RNA molecules produced in porcine alveolar macrophages during early passage
infection of porcine reproductive and respiratory syndrome virus (PRRSV). Based on sequencing two
PRRSV isolates, namely XM-2020 and GD, we revealed a high-resolution and diverse transcriptional
landscape in PRRSV. The data revealed intriguing differences in subgenomic recombination types
between the two PRRSVs while also demonstrating TRS-independent heterogeneous subpopulation
not previously observed in Arteriviruses. We find that TRS usage is a regulated process and share
the common preferred TRS in both strains. This study also identified a substantial number of TRS-
mediated transcript variants, including alternative-sg mRNAs encoding the same annotated ORF, as
well as putative sg mRNAs encoded nested internal ORFs, implying that the genetic information
encoded in PRRSV may be more intensively expressed. Epigenetic modifications have emerged as
an essential regulatory layer in gene expression. Here, we gained a deeper understanding of m5C
modification in poly(A) RNA, elucidating a potential link between methylation and transcriptional
regulation. Collectively, our findings provided meaningful insights for redefining the transcriptome
complexity of PRRSV. This will assist in filling the research gaps and developing strategies for better
control of the PRRS.

Keywords: PRRSV; transcriptional regulatory sequences; transcriptomics; nanopore; epitranscriptome

1. Introduction

Porcine reproductive and respiratory syndrome (PRRS) has been one of the most
economically significant infectious diseases that seriously affected the global swine in-
dustry over the past three decades [1]. The etiologic agent, PRRS virus (PRRSV), is an
enveloped single-stranded positive-sense RNA virus classified within the order Nidovirales,
family Arteriviridae. The current family Arteriviridae is further specified into six subfamilies,
including Variarterivirinae, Zealarterivirinae, Equarterivirinae, Simarterivirinae, Crocar-
terivirinae, and Heroarterivirinae [2,3]. The viral genome of PRRSV is approximately
15 kb in length and comprises at least 10 open reading frames (ORFs). The genomic RNA
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features two large overlapping open reading frames (ORF1a and ORF1b) in the 5′ end that
auto-proteolytically cleaved to yield 16 non-structural proteins (nsps) later, the majority
of which act as a driving force for PRRSV genome replication and subgenomic mRNA
transcription [2,4]. The 3′ end of the genome contains ORFs 2-7 that are translated from the
nested sets of 3′ and 5′ co-terminal subgenomic mRNAs (sg mRNAs) [5–7].

By infecting the monocyte-macrophage lineage, especially preferentially in pulmonary
alveolar macrophages (PAMs), the conditions may develop into severe proliferative and
interstitial pneumonia. The International Committee on Taxonomy of viruses grouped
into two genotypes: European (Type 1, Lelystad) and North American (Type 2, VR-2332).
Nowadays, multiple genetic lineages coexist in Chinese swine herds, including lineage
1 (NADC30-like), 3 (QYYZ-like), 5 (VR2332-like), and 8 ((CH-1a-Like/JXA1-like) of type
2 PRRSV [8,9]. As RNA-dependent RNA polymerase (RdRp) lacks the 3′ to 5′ proofreading
exonuclease activity, considerable genetic heterogeneity and taxonomic diversity have
been noted among the PRRSV strains fully sequenced to date. The mutational spectrum
of genotypes rather than individual variants was thought to be the underlying molecular
mechanisms of evolutionary events (termed quasispecies) [10,11].

As proposed by Sawicki and van Marle, the transcription hallmark of PRRSV was a
discontinuous elongation of minus strands to eventually produce a series of sg mRNAs via
template switch events [7,12]. During negative-strand RNA synthesis, the viral replication
and transcription complex (RTC) interrupts transcription following the encounter of body
TRS (TRS-B) and is re-initiated at the leader sequence (TRS-L) located at the 5′ end. The
consensus TRS-L core motif of PRRSV is 5′-UUAACC-3′, and six major sg mRNAs (sg
mRNA 2-7) have been reported to be produced in PRRSV-infected cells; for more details,
please refer to [13–15]. However, despite these sg mRNAs being thought to be an indi-
cator of effective viral infection and flexible transcriptional activity, their abundance and
complexity in host cells have been grossly overlooked [16].

Among different molecular platforms, conventional next-generation sequencing (NGS)
has played an essential role in elucidating the transcriptomics of SHFV-infected cells [17,18].
Nevertheless, this approach has its limitations, such as the inability to accurately charac-
terize full-length transcriptomes with intact 3′ and 5′ termini, making it difficult to define
the configuration of sg mRNAs or the specific TRS type in recombination events. Indeed,
Nanopore sequencing technology (ONT) is capable of generating ultra-long reads and has
been developed for the characterization of the highly nested transcriptomic complexity of
various viruses [19,20]. In this work, we applied for the first time the Nanopore platform to
provide a deep characterization of splicing events generated in PRRSV at a high-resolution
transcriptome-wide, and these molecules presented an extensive and similar recombination
pattern during replication in vitro. Our analyses emphasized the differential transcrip-
tional activity in porcine alveolar macrophages with two distinct strains and further offered
more accurate insights into global body TRS sites. The discovery of multiple novel splice
isoforms means that the coding capacity of PRRSV was more complex than previously
anticipated. Therefore, further experiments of the targets are still needed to validate them
in the future.

The data also offered critical insight into epigenetic modification at the transcriptomic
level. Both viruses induced different epigenetic responses in infected PAMs. In addition,
a consistent pattern of methylation modification of different sg mRNAs relative to the
genome was observed. In general, these findings provide a basis for future research of its
function and biological significance in the transcription process.

2. Materials and Methods
2.1. Sample Preparation and Total RNA Extraction

The 6-week-old specific pathogen-free (SPF) piglet was euthanized, and the porcine
alveolar macrophages (PAMs) were obtained from lung lavage, as previously described [21].
The two different PRRSV isolates sequenced in this study were XM-2020 (MZ160905.1,
lineages 1) and GD (EU109503.1, lineages 8), respectively. PAMs were inoculated with
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PRRSV at a multiplicity of infection (MOI) of 1 in serum-free media (RPMI 1640, Gibco BRL
Co., Ltd., Grand Island, NY, USA) and incubated for 12 h at 37 ◦C. After media removal,
cell pellets were immediately frozen in liquid nitrogen for 2 h, then stored at −80 ◦C for
RNA extraction (R6834 Total RNA Kit I, Omega Bio-Tek, Inc., Norcross, GA, USA). The
RNA concentration and purity of each sample were checked using the NanoDrop One
spectrophotometer (Thermo Scientific, Wilmington, DE, USA) and a Qubit 2.0 Fluorometer
(Invitrogen, Carlsbad, CA, USA).

To determine the initial replication of PRRSV in host cells, the viral titers were cal-
culated at 12 h post-inoculation (hpi) by the method of Reed-Muench. Six independent
biological and three technical replicates were performed for each sample. Differences
between groups were assessed by one-way ANOVA (p values below 0.05 were considered
significant).

2.2. Library Preparation and Sequencing

Nanopore direct RNA sequencing: Direct RNA libraries were prepared according to
the manufacturer’s instructions (SQK-RNA002, Oxford Nanopore Technologies, Oxford,
UK) and loaded onto R9.4.1 SpotON flow cells, then sequenced on the PromethION device
for 72 h [22]. Base-calling of raw data (fast5 format) was done by Guppy (v3.2.6) with
default settings [23].

Illumina RNA sequencing: Following the manufacturer’s protocol (NEBNext® Ul-
traTM II kit, NEB, Ipswich, MA, USA), the Illumina workflow involved a tedious library
construction process, including end repair and A-tailing, and adapter ligation and am-
plification. The purity and integrity of RNA libraries were evaluated with the Agilent
2100 Bioanalyser (Agilent Technologies, Inc., Santa Clara, CA, USA). Prepared denatured
libraries were loaded onto the flow cell and then sequenced on a NovaSeq 6000 instrument
(Illumina, San Diego, CA, USA). The read length of the paired-end approach to 2 × 150 bp.

2.3. Genome-Wide PRRSV Phylogenetic Analysis

Hybrid assembly was employed using both Nanopore and Illumina data by the
MaSuRCA v3.2.9 hybrid assembler [24], and the Racon module was used to perform three
rounds of error correction on the Nanopore sequencing data [25]. The assembled viral
genome of 15 kb size was used as a framework for further analysis. To better understand the
species distribution of the selected isolates, a phylogenetic tree was constructed based on
the ClustalW method using the Molecular Evolutionary Genetics Analysis (Mega) version
X program (The Biodesign Institute, Tempe, AZ, USA). All the PRRSV reference genomes
were retrieved from GenBank, and the details are listed in Table S1.

2.4. Data Analysis

Nanopore: NanoFilt v.2.7.1 was used to further trim and filter out low-quality se-
quencing reads [26]. Then, FMLRC (v0.1.2) was used to perform hybrid correction on
the filtered data, with the short-reads as a reference [27]. Raw reads were aligned to
the reference genome of PRRSV by Minimap2 v2.11 (parameter: -ax splice -uf -k14 –
secondary = no) [28]. Poor-quality and non-viral reads were filtered. Split-reads were
selected using the CIGAR codes through an AWK command, and the coordinates of
the breakpoint were recorded for further analysis. Samtools was used to identify intact
sub-genomic mRNAs, and its read must map within the leader sequence of 30 bases
(5′-GGTCTCTCCACCCCTTTAACCATGTCTGGG-3′). Body-TRS was identified by the
hexamer 5′-UUAACC-3′ homology motif that occurred downstream of the splicing sites.

Illumina: HISAT2 (v2.2.1) was used to align RNA-Seq data to the PRRSV reference
strain and then identified the split reads by parsing the BAM alignment CIGAR. Partial
default parameters were used in the analysis: –very-sensitive, –no-mixed, –no-discordant.
Then, 5′ and 3′ selections for each spanning-junction read were recorded and then outputted
all the contents as a tab-delimited.txt file for further analysis. All analyses were conducted
using R software (version 4.0.3), and figures were plotted in ggplot2.
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2.5. Identification of 5mC Methylation

The threshold was set by the Q-score to execute the filtering command, and then the
ont_fast5_api (parameter: -recursive version: 3.1.6) was used to convert the multi_read_fast5
file into the single_read_fast5 file. The 5mC methylation detection was configured using the
following steps or parameters: Tombo v1.5 was first used to resquiggle raw nanopore reads
(parameter: default), and then ran using Tombo detect_modifications alternative_model
command (parameter: –coverage-dampen-counts 2 0). We obtained the modification cov-
erage per base in the final and used R for data analysis and visualization. See [26,29] for
more details about Tombo commands and algorithms.

3. Results
3.1. The Prevalent Status and Genetic Diversity of PRRSV-2 in China

Phylogenetic trees were constructed using 96 reference strains to explore the genetic
diversity among PRRSV isolates. The prevalent PRRSV-2 strains showed a high degree
of variability and were further clustered into four distinct lineages: lineage 1 (NADC30-
like), lineage 3 (QYYZ-like), lineage 5 (VR2332-like), and lineage 8 (JXA1-like/HP-PRRSV).
The phylogenetic investigations demonstrated that the two strains, XM-2020 (GenBank:
MZ160905.1) and GD (GenBank: EU109503.1) used in the current study were designated
as lineage 1 and lineage 8, respectively (Figure 1). Retrospective studies showed that
the epidemic of lineage 8 reached its peak in 2009, after which it declined over time and
was concomitant with a rapid increase in the occurrence of lineage 1 [11]. Compared to
previously circulating PRRSV strains, the emerging variants were thought to possess higher
inter-lineage recombination frequencies, thereby affecting the viral virulence and clinical
outcome. It was still a puzzle how lineage 1 (NADC30-like) gradually replaced lineage
8 (HP-PRRSV) to become predominant. Additionally, this also posed a challenge for a
high-throughput transcriptomics understanding of different evolutionary driving forces
that can affect PRRSV genetic diversity.

3.2. NADC30-Like PRRSV and HP-PRRSV Induce Different Transcriptional Activity during
Infection in Susceptible PAM Cells

To decode the transcriptomic profile of PRRSV during in vitro infection, the total li-
braries derived from 12 h of PRRSV-infected (or non-infected) porcine alveolar macrophages
were sequenced on MinlON nanopore and Illumina Nova-seq, following the Workflow
(Figure 2). Extracellular PRRSV RNA levels are shown in Figure S1. Mapping reads to these
reference genomes yielded a total of 34,061 and 4619 unique transcripts in XM-2020 and GD
samples, respectively, of which 7036 and 1240 chimeric RNAs contained leader sequence,
respectively (Figure 3A; Table S2). The most abundant transcripts in both samples were
centered between 500 and 1000 nt in length, particularly the longest transcript with a length
of more than 10,000 nt, providing more precise insights into potential multi-mapping
(Figure 3B). The analysis showed an intriguing difference between gRNA and sg mRNA
reads in the depth of coverage, especially leading to a sharp drop after the leader sequence
of the 5′UTR and followed by a gradual rise at the regions of structural proteins (Figure 3C).
As expected, a high degree of the transcriptome complexity of PRRSV was attributed to
multiple types of RNA splicing events. The majority of spliceosomes are the products of
discontinuous transcription, which occurs between the leader sequence of the upstream 5′

UTR ends and the genome body (TRS-B). The canonical splicing donor is highly enriched
in the annotated 5′ UTR ends. Beyond the 5′ and 3′ co-terminal canonical transcripts,
some non-canonical products were detected, including non5_3, 5_non3, and non5_non3
(Figure S2). The latter suggests that the alternative splicing events are not simply controlled
by the typical machinery of TRS-dependent (UUAACC motif), which means that potentially
non-canonical transcriptional processes occurred during PRRSV infection. In addition,
comparative transcriptome analysis revealed that the viral replication and transcriptional
activity differ significantly among distinct strains. The transcriptional activity driven by
XM-2020 infection seemed to be higher than compared to GD, and this heterogeneity
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may be caused by the differential ability in the early stages of virus replication. Detailed
information about the chimeric RNAs identified by Nanopore and Illumina is supplied in
Tables S2–S4.
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reconstructed subgenomic mRNA aligned with leader sequences based on analysis of different categories of split-reads.
Second, systematically identified putative TRS-B sites in PRRSV genomes. Third, captured single-molecule resolution atlas
of methylation modifications in native RNA molecules.

3.3. Analysis of Alternative Splicing Events during Transcription

Splicing events of the PRRSV RNAs, including the canonical (known) and non-
canonical (novel isoforms), were further analyzed based on the collected data from either
long-read Nanopore or short-read Illumina sequencing. The majority of splicing events
identified by Nanopore could be readily recovered from Illumina data alone and were
strongly supported by polyA data (Figure 4). Although the Illumina analysis identified
larger numbers of isoforms, it was yet insufficient to cover the full scope of the sg mRNA
diversity in length. As a consequence, the incomplete fragments of short read do not reflect
the real abundance of the spliceosome in samples. The vast majority of the spliceosomes
were generated by 5′ leader-dependent template switching between TRS-L and TRS-B
(Figure 5A,B). The split reads mapped to the TRS-B encoding ORF7 protein were the most
abundant of the TRSL-dependent canonical transcripts. Pronounced heterogeneity in the
leader-body fusion sequence of the corresponding sg mRNAs was also observed. Fur-
ther examination also revealed the existence of three types of discontinuous transcription
events classified as the fusions of TRS-L to unexpected 3′ splicing sites, TRS-L independent
long-distance fusions (gap more than 1000 nt), and TRS-L independent local fusions (gap
less than 1000 nt) (Figure 5A,B).
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lacking the leader sequence. (B) Read length distributions. (C) Genome-wide coverage of distinct PRRSV isolates sequenced
by Nanopore and Illumina technologies. The internal image magnifies the coverage for the non-structural gene.
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Intriguingly, these chimeric transcripts independent of TRS-L have not been appreci-
ated as a distinct population before, and with differential expression between XM-2020 and
GD (Figure 6A,B). The 5′ splicing sites of these heterogeneous subpopulations were more
enriched upstream of the ORF1b without the hotspots pattern, while the 3′ junction sites
were formed preferentially around transcriptionally active TRS-B loci. To assess whether
such events are potentially related to some nucleotide preference surrounding breakpoint
sites, sequence logos containing 12 upstream of the 3′ breakpoint and 12 downstream
of the 5′ breakpoint nucleotides were generated. A strong preference for nucleotides
surrounding the breakpoint sites was observed (Figure 6C). Cytosine (C) was favored
upstream of the breakpoint, whereas the uracils (U) were favored downstream, suggest-
ing that such features could be involved in the mechanism of non-canonical sg mRNAs
generation. Although the potential mechanisms of aberrant RNA–RNA interactions are
currently unknown and functionally might not code any viral proteins, they bring the
viral transcriptome complexity to a higher level, which is worth more thorough studies to
elucidate the machinery.
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3.4. Identification of TRS-B Sites in PRRSV Genome

All mapped TRS-dependent transcripts were analyzed for 3′ splice sequences by
the nanopore data to identify putative TRS-B loci, most of which were located upstream
in annotated ORFs. The utilization of individual TRS-B was calculated by dividing the
relative abundance of the sg mRNAs it produced by the total number of transcripts from
all TRSL-dependent transcripts. The highest density of TRS-B mapped to the 3′ structural
protein region of the genome, of which the nucleocapsid protein (N) regulated by TRS7
was most abundant, generating 3324 reads in XM-2020 (~47.24%) and 579 reads in GD
(~46.69%), respectively (Figure 7A). In combination with Nanopore and Illumina, 48 and
18 high-confidence shared loci of TRS-B were identified in XM-2020 and GD, respectively
(Figure 7B). The distribution of TRS-B seems more complex than previously appreciated.
The position deviation of TRS-B within the genome observed for different strains provided
insights that each virus used specific molecular mechanisms during transcription. The body
sequence composition showed that the nucleotide at position 1 had a higher frequency of
single nucleotide (U-to-A) polymorphism in GD and XM-2020, while the nucleotides at
positions 2–6 were relatively more conserved (Figure 7C). The above observations support
our hypothesis that there is only one preferred TRS in each structural gene and that they are
used normatively in transcriptional regulation. The newly identified minor TRS-B served
as backup sites, generating additional sg mRNAs encoding the known structural proteins,
but their abundance of transcripts was much lower than that from the major. By contrast,
more backup TRS-B sites were identified in XM-2020. This low-level use of alternative
TRS-B potentially enabled the virus to maximize the efficiency in terms of the optimal ratio
of proteins required for assembly. Accordingly, the newly emerged lineage 1 was thought
to drive PRRSV evolution through alternative TRS-B generation.
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Multiple putative TRS-B were mapped to the non-structural protein region, where 14
and 4 sites were identified in XM-2020 and GD, respectively. These long sg mRNAs were
expressed in ‘low’ abundance, which encoded different lengths of N-terminal-truncated
polyproteins pp1a and pp1ab; most of these occurred within the ORF1b region rather than
ORF1a. These distinctive patterns of transcription were shown in both viruses, indicating
that subgenomic RNA synthesis is not restricted to the 3′-proximal areas of the genome
throughout the transcriptional cycle. Consequently, the additional TRS-B within non-
structural protein regions represented a source of reserve backups for those members of
replication-transcription complex proteins lacking high transcription activity, especially
nsp9, nsp10, and nsp11. These findings point to a potential selective pressure on TRS-B
variants adapted to virus assembly.

Whether certain cis-acting elements in the viral genome can drive or facilitate the
production of sg mRNA remains unclear. The sequence logo depicted the flanking residue
distributions surrounding the identified TRS-B loci and found local position-specific motif
preferences, e.g., a preference for ‘AUU’ residues was seen immediately 5–7 nt downstream
of the body core sequence. These conserved flanking residues may function as cis-acting
RNA elements to facilitate base pairing and template switching during sg mRNA synthesis
(Figure 7C).
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Figure 7. Genome-wide distribution of putative TRS-B sites. (A) The multi-phasic abundance of sub-genomic mRNA
generated from individual TRS-B was shown. Peak height was positively correlated with the fractional usage of individual
TRS-B. The cumulative count of TRS-B based on gene expression profiles is shown in the right part of the drawing. (B) A
genome view of the putative TRS-B sites shared by Illumina and Nanopore methods was drawn. TRS with the highest
fractional usage is marked as red bars. (C) The frequency of nucleotides surrounding all TRS-B sites was visualized using
the SeqLogo package in R. TRS-B core sequences are noted with a black subscript.

The functional importance of the secondary structures of the body TRS regions has
been reported in transcriptional responses of PRRSV [30,31]. It was found that the high-
order structures of the TRS-B were similar to the 5′-proximal region and were all charac-
terized by one putative stem-loop with the core sequence located at the top (Figure S3A).
Conceivably, the template-switching between the 5′ leader and TRS-B may be a more parsi-
monious model to explain the formation of nascent negative-strand RNA during PRRSV
transcription (Figure S3B). Therefore, its binding stability is required for efficient transcrip-
tion. Consistent with this cognition, the nascent negative chain cTRS7 has a remarkably
lower Gibbs binding free energy against the leader sequence, resulting in the highest
stability of duplexes binding (Figure S3C). Additionally, sequence complementarity also
existed between variable 5’ and 3’ flanking sequences and the leader sequence. All of the
above characteristics will be conducive to enhancing the template-switching efficiency of
nascent RNA chains, thus flexible hybridization with the leader TRS during discontinuous
transcription.

3.5. Gene Predictions and Annotations

Varied expression efficiency of individual ORF was common in distinct PRRSV isolates.
To assess the coding capacity of the PRRSV transcriptome, the total amount of sg mRNAs
produced by pooling multiple TRS-B encoding the same ORF was used to indicate the
expression abundance of that ORF. Among the XM-2020, ORF7 (N, 70.82%) had the highest
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abundance, followed by ORF6 (M, 8.84%) and ORF5 (GP5, 8.17%). Whereas in GD, the
most abundant was ORF7 (N, 48.30%), followed by ORF5 (M, 26.77%) and ORF6 (GP5,
16.85%) (Figure 8A). Alternatively, the 3′ splicing site of certain sg mRNAs was mapped to
the C-terminal region of the annotated gene, which may result in the translation of internal
ORF or downstream ORF. Figure 8B reveals the distribution of these theoretical variants
and which type they are derived from. Overall, 26 and 17 putative peptides were identified
in the XM-2020 and GD transcriptomes, respectively (Figure 8C). Of note, the emerging
evidence indicated that a novel alternative open reading frame was discovered in XM-2020,
with lower transcriptional levels, encoding a 37-amino acid peptide inside the coding
region of the N gene, named ORF7a (Table S3). This finding was supported by another
study, and further experimental strategies are needed to validate the functional relevance
of this potential short peptide during PRRSV infection [32,33]. Although the authentic
expression profiles of these N-terminal truncated ORFs and their potential functions remain
unclear, they represent an additional level of transcriptome complexity and greatly expand
our earlier knowledge of the coding capacity for PRRSV. It is also worth noting that some
non-full-length peptides may be assembled into viral particles and continue to spread, so it
is necessary to keep vigilance to detect genomic rearrangements and deletions.
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open reading frames (ORFs) from chimeric reads. (A) Heatmaps reflect the differentially expressed viral genes between two
distinct strains. Non-canonical junctions provided the generation of variant open reading frames. (B) The stacked bar chart
plots the proportion of reads in each cluster as estimated by variants. The truncated peptides derived from both in-frame or
alternative frames of annotated ORFs expanded the coding capacity of PRRSV. (C) Overview of novel putative nested ORFs
in viral genomes. The overlapping annotation data supporting predicted peptides are depicted using a Venn diagram.

3.6. Revealing m5C Sites in gRNA and sg mRNAs

Methylated cytosine (m5C) has been identified as a widespread epigenetic marker in
various RNAs, and such modifications have recently been deemed as pivotal regulators of
gene expression at the post-transcriptional level, playing key roles in regulating processing,
stability, and splicing of mRNAs. Through the detection of deviations in voltage signals,
direct RNA-seq can reveal the complexity of modification of mRNA (Figure 9A). This study
depicted the first comprehensive atlas of cytosine methylation in the epitranscriptome
during the early stages of PRRSV infection in vitro. Both viruses showed the widespread
occurrence of m5C in poly(A) RNA. The data revealed substantial differences in the number
and distribution pattern of m5C in different viruses, with the nsp2 regions exhibiting
high modification site density in both XM-2020 and GD (Figure 9B). Based on Tombo,
43 and 31 high-confidence m5C sites were identified in XM-2020 and GD, respectively
(frequency > 0.9, covered > 10 reads); nevertheless, no obvious motif could be detected
around ‘C’ (Figure 9C). Furthermore, we sought to determine whether there is a potential
m5C location preferentially existing in sg mRNA clusters. A pronounced increase of the
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m5C frequency near the initial of the 3’ splice sequences was observed in both viruses,
suggesting this modification was preferentially enriched around the translational start
codon of sg mRNAs. Notably, multiple 5-methyl cytosine modification sites consistent
with the genomic results were seen in sg mRNA clusters (Figure 9B). These results propose
that the highly consistent methylation modifications may play the same functional role
in different transcript classes. Overall, this work demonstrated the potential association
of methylation modifications and transcription regulation and provided a framework for
future research toward the role of epigenetics in the evolution and pathogenicity of PRRSV.
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from nanopore sequencing. (B) Characterization of m5C modification in the transcriptome range. The red dot highlights the
predicted sites with a methylation score > 0.9. The asterisk represents the consistent methylation modifications between
genomic RNA and the nested sg mRNAs. (C) Motif analysis of 5 nt upstream and downstream of m5C sites across the
PRRSV genome.

4. Discussion

Efficient and sophisticated transcription strategies are fundamental for PRRSV to repli-
cate, assemble, and quickly respond to the host cell environment. Accordingly, decoding
the transcriptional atlas and understanding their regulation mechanisms is vital to eluci-
dating the key biological strategies of disease control. Traditionally, most transcriptomics
studies of PRRSV still rely on identifying sg mRNAs through Northern blot methods or
Illumina sequencing [34–36]. Despite the growing interest in the potential of transcrip-
tome analysis, few or no studies have directly addressed recombination events or TRS-B
systematic annotation in PRRSV. This could be related to the limitations of conventional
sequencing technologies, such as the inability to identify full-length splice isoforms that
span regions. Currently, Nanopore direct RNA sequencing (ONT) offers a single ultralong
read length that can facilitate the reconstruction of complex genomes and analysis of rare
transcriptional patterns [20]. This platform has been extensively used in transcriptomics
research targeting SARS-CoV-2 and captured a significant number of spliced mRNAs with
high resolution [37–39]. Nonetheless, Nanopore reads usually have a relatively high error
rate, limiting their reliability and usefulness. Overcoming these obstacles will require
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further breakthroughs in developing new nanopores, increasing throughput, optimizing
base-calling methods, and bioinformatics pipelines [40]. Once these constraints are fixed,
ONT will have a tremendous impact on the field of genomics.

By using state-of-the-art nanopore sequencing, this dataset offered the most systematic
and comprehensive landscape of the PRRSV transcriptome yet achieved. For all viruses
tested, these splicing events predominantly take place between TRS-B upstream of indi-
vidual ORF and TRS-L. However, a small fraction of RNA fusions might be produced
with a TRS-independent pattern. Intuitively, TRS-independent populations from GD were
more diverse than those from XM-2020, indicating a narrow selectivity in the packaging
process. Additionally, we found that aberrant non-canonical populations were gener-
ally heterogeneous and tended to be enriched around canonical breakpoints, which was
presumably caused by the instability of the RNA-dependent RNA polymerase “jump”
between homologous sequences. Several early studies described PRRSV non-canonical sg
mRNAs (termed heteroclite subgenomic RNAs), with their packaging signals more biased
to splice in various sites within ORF1a, forming a diffuse pattern of fusions [41–43]. The
subsequent experiments indicated that atypical RNAs were intrinsically associated with
PRRSV infection and were co-packaged into infectious particles with gRNA [44]. Hetero-
clite RNAs may also be involved in the establishment and maintenance of viral persistence
infections, although the mechanism remains to be determined [45–47]. It is noteworthy that
a similar observation has been reported for SARS-CoV-2, implying that the production of
TRS-independent transcripts was seen as a common programmed phenomenon involving
potentially biological functions rather than species specificity [37]. Incomplete viral RNAs
were also considered as defective interfering particles (DVG) during natural infections,
thereby limiting the replication of standard viruses [48,49]. Recent work has begun to eluci-
date the distinct functions of these different DVGs, such as promoting the persistence and
maintaining the immunostimulatory activity of a wild-type virus infection [50]. Further
study is required to determine the origin of the new heterogeneous subpopulation and the
exact mechanisms behind recombination events.

TRS-B is critical for controlling transcription cycle gene expression; thus, its identi-
fication and analysis is the first step toward understanding its transcriptional relevance.
Multiple distinctly spliced sg mRNA transcripts coding for the same protein have been
documented, with the TRS with the highest utilization (i.e., the highest abundance) being
referred to as the major, while others with low-level usage were referred to as alternative
TRSs [17,18]. XM-2020 showed more alternative TRS sites during infection. These obser-
vations strongly suggest that the alternative TRS’s variation among virus subtypes was
adaptive to maximize its efficiency of transcription under stress conditions. We cannot say if
the increased utilization of TRS-B sites is the cause or consequence of more efficacious virus
assembly, but our findings are essential to explore the potential adaptations correlated with
viral evolutionary or persistent infection. Studies on transcriptomic data also uncovered
additional TRS-B that originate from internal regions of known mRNA-encoding genes,
which may result in the expression of N-terminally truncated polypeptides. It has been
reported that the translation of particular downstream ORFs might be related to enhancing
the translation of the canonical ORF, and the increasing number correlated positively with
their regulatory effect [51,52]. In this sense, this expansion added extensive complexity to
transcriptional regulation and its coding potential of PRRSV.

Doubtlessly, the field of epitranscriptomics was uncovered around dynamic RNA
modifications and their roles in viral transcription at a rapid pace [53]. Currently, advances
in Nanopore technology have enabled unbiased detection of RNA modification and its
dynamics. Here, we first provided a single-nucleotide resolution mapping of cytosine
methylation in poly(A) RNA with these two different strains, and further explored the high
correlation of modification sites between sg mRNAs and genomic RNA. RNA methylation
differed extensively between strains of the same geographical origin, whereas the molecular
mechanisms that underlie genetically driven epigenetic heterogeneity are still largely
unknown. This conservative pattern of RNA methylation is indicative of a heritable non-
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random process, and thus can serve as a repressive or activation marker to maintain gene
expression in homeostatic balance. Dynamic RNA modifications have emerged as a crucial,
but widely neglected, part of transcriptional regulation in PRRSV. Collectively, the database
provided a valuable resource for future studies regarding the functional impact of m5C on
genomics and transcriptomics.

5. Conclusions

Longitudinal monitoring of sg mRNA expression within the host and the profiles
of TRS-B sites can provide valuable information for exploring the molecular mechanism
of genetic evolution selection and quasispecies diversity in PRRSV. Here, we combined
Nanopore long-read technology and next-generation short-read sequencing methods to
investigate genome-wide full-length splice isoforms and accurately reconstruct the internal
transcriptome architecture. This hybrid solution can make up for the weaknesses of
their respective technologies, allowing for more accurate elucidation of the transcriptome
complexity. As the third-generation sequencing appears, revealing the transcriptional
regulation mechanism of the PRRSV will help researchers to track and eventually curb it.
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for the recombination events dependent on TRS-L in XM-2020 DRS data, Table S4: This table extends
the information for the recombination events dependent on TRS-L in GD DRS data.
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